Replicating Mathematical Inventions: Galileo’s Compass, Its Instructions, Its Students
نویسندگان
چکیده
Abstract Questions about how closure is achieved in disputes involving new observational or experimental claims have highlighted the role of bodily knowledge possibly irreducible to written protocols and instructions build operate instruments. This essay asks similar questions a scenario that both related significantly different: replication an invention, not observation instrument through which it produced. Furthermore, machine considered here—Galileo’s compass sector—was typical industrial invention (like spinning jenny), but mathematical (a calculator), is, produces numbers, yarn. case study describes some similarities differences between replicating experiments, traditional machines producing material outputs, inventions yielding calculations information. comparison indicates that, as other kinds replication, involves texts (the calculator’s instructions) this cannot be properly described either tacit explicit. It rather takes shape memory—muscle memory—that may recalled from reading instructions.
منابع مشابه
validation of a revised logical-mathematical intelligence scale and exploring its relationship with english language proficiency
نظریه هوش چندگانه قسمتهای متفاوت هوش بشری را مورد بررسی قرار می دهد که با شناخت آن شخص به درک بهتری از توانایی های خود میرسد و در نتیجه سعی در استفاده از آن جهت یادگیری بهتر میکند. همچنین با شناخت استعداد دانش آموزان، فرایند یادگیری بهتر میشود. هدف از انجام دادن این تحقیق بررسی رابطه بین هوش ریاضی و استعداد یادگیری زبان انگلیسی میباشد. برای انجام این تحقیق از پرسشنامه هوش ریاضی که توسط شیرر در ...
A Mathematical Structure for Modeling Inventions
The paper is the first of several ones [63,73] describing a mathematical structure developed in the FSTP project, mathematically modeling Substantive Patent Law (“SPL“) and its US Highest Courts‘ precedents primarily for emerging technologies inventions. Chapter 2 presents this mathematical structure comprising particularly 3 abstraction levels each comprising “inventive concepts“, their “subse...
متن کاملMathematical Thought and Its Objects
Needless to say, Charles Parsons’s long awaited book1 is a must-read for anyone with an interest in the philosophy of mathematics. But as Parsons himself says, this has been a very long time in the writing. Its chapters extensively “draw on”, “incorporate material from”, “overlap considerably with”, or “are expanded versions of” papers published over the last twenty-five or so years. What we ar...
متن کاملMeasurement and Its Mathematical Scale
It is argued that every measurement is made in a certain scale. The scale in which present measuments are made is called present scale which gives present knowledge. Quantities at the limits to present measurement may be observables in other scales. Cantor’s series of infinites is used to describe scales of measurement. Continuum Hypothesis and Schroedinger
متن کاملMathematical thought and its objects
Matematikaren filosofia izan da Charles Parsonsen ikerketa-gaia urte askotan. Harvard Unibertsitateko Edgar Pierce Professor of Philosophy emeritua izanik, jarraitzen du lanean, azken liburu honek erakusten duen moduan. Egia da kapitulu gehienak aurrez publikatutakoak direla baina, Parsonsek berak dioen moduan, guztiak daude berrikusiak, berrituak edo garatuak. Denbora luzez espero izan den lib...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Perspectives on Science
سال: 2022
ISSN: ['1530-9274', '1063-6145']
DOI: https://doi.org/10.1162/posc_a_00422